Day 56

Binary Tree Level Order Traversal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if (root == null) {
return res;
}

Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty()) {
int size = queue.size();
List<Integer> level = new ArrayList<>();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
level.add(node.val);
if (node.left != null) queue.offer(node.left);
if (node.right != null) queue.offer(node.right);
}
res.add(level);
}
return res;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
func levelOrder(root *TreeNode) [][]int {
var res [][]int
if root == nil {
return res
}

var queue []*TreeNode
queue = append(queue, root)

for len(queue) > 0 {
size, level := len(queue), make([]int, 0)
for i := 0; i < size; i++ {
node := queue[0]
queue = queue[1:]
level = append(level, node.Val)
if node.Left != nil {
queue = append(queue, node.Left)
}
if node.Right != nil {
queue = append(queue, node.Right)
}
}
res = append(res, level)
}
return res
}

Binary Tree Right Side View

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public List<Integer> rightSideView(TreeNode root) {
List<Integer> res = new ArrayList<>();
if (root == null) {
return res;
}
List<List<Integer>> levels = new ArrayList<>();
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty()) {
int size = queue.size();
List<Integer> level = new ArrayList<>();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
level.add(node.val);
if (node.left != null)
queue.offer(node.left);
if (node.right != null)
queue.offer(node.right);
}
levels.add(level);
}

for (List<Integer> level : levels) {
res.add(level.getLast());
}
return res;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
func rightSideView(root *TreeNode) []int {
var res []int
if root == nil {
return res
}
var levels [][]int
var queue []*TreeNode
queue = append(queue, root)

for len(queue) > 0 {
size, level := len(queue), make([]int, 0)
for i := 0; i < size; i++ {
node := queue[0]
queue = queue[1:]
level = append(level, node.Val)
if node.Left != nil {
queue = append(queue, node.Left)
}
if node.Right != nil {
queue = append(queue, node.Right)
}
}
levels = append(levels, level)
}
for _, level := range levels {
res = append(res, level[len(level)-1])
}
return res
}

Populating Next Right Pointers in Each Node

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution {
/**
* @param root
* @return
*/
public Node connect(Node root) {
if (root == null) {
return root;
}

Queue<Node> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty()) {
int size = queue.size();

Node prev = null;
Node node = null;
for (int i = 0; i < size; i++) {
if (i == 0) {
node = queue.poll();
prev = node;
} else {
node = queue.poll();
prev.next = node;
prev = prev.next;
}
if (node.left != null) queue.offer(node.left);
if (node.right != null) queue.offer(node.right);
}
prev.next = null;
}
return root;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
func connect(root *Node) *Node {
if root == nil {
return root
}

var queue []*Node
queue = append(queue, root)

for len(queue) > 0 {
size := len(queue)

for i := 0; i < size; i++ {
node := queue[i]
if i != size-1 {
queue[i].Next = queue[i+1]
}
if node.Left != nil {
queue = append(queue, node.Left)
}
if node.Right != nil {
queue = append(queue, node.Right)
}
}
queue = queue[size:]
}
return root
}

Invert Binary Tree

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
public TreeNode invertTree(TreeNode root) {
if (root == null) {
return null;
}

TreeNode node = root.left;
root.left = root.right;
root.right = node;
invertTree(root.left);
invertTree(root.right);
return root;
}
}
1
2
3
4
5
6
7
8
9
10
func invertTree(root *TreeNode) *TreeNode {
if root == nil {
return nil
}

root.Left, root.Right = root.Right, root.Left
invertTree(root.Left)
invertTree(root.Right)
return root
}